
sbt-ethereum
> a terminal for the world computer

steve randy waldman — swaldman@mchange.com — https://www.sbt-ethereum.io/ — https://www.interfluidity.com/ — @interfluidity

the blockchain is the dApp
Remember this?

...The Times 03/Jan/2009 Chancellor
on brink of second bailout for banks...

meanwhile...
4 We've internalized the

infantilizing norms of
contemporary Silicon Valley.

4 Just wait for "us" (the "devs!",
the "team!", "VCs!") to build
you ("end users!") something
complicated and awesome!

meanwhile...
4 It's gonna take a lot of time and

money, because "end users!"
need an awesome "UX!"

4 Every experiment requires a
funded startup and scale
sufficient to justify that

4 So we run tens of big, expensive
experiments rather than
thousands of small, cheap ones

the blockchain is the dApp
But...

4 Ethereum smart contracts expose a UI automatically

4 It's called an ABI

4 Smart contracts take an order of magnitude less effort to write
than the Web, mobile, and UX stuff in which people surround them

4 We should prefer a world with many small-scale economic
arrangements to one with a few, standard large-scale ones

the blockchain is the dApp
4 Sophisticated "end users" can deploy and interact
with smart contracts directly, and take full control

4 Less sophisticated users can rely upon humans whom
they directly know as helpers and intermediaries

4 Eventually, intermediary roles can be smoothed and
automated away. But that's eventually.

sbt-ethereum
4 A convenient, high-level, text-based user interface
for interacting with Ethereum and compatible
blockchains

4 A smart-contract development and deployment tool

4 A high-performance framework for integrating
smart contracts into Scala applications

4 A platform for developing app-specific CLIs

very stateful
sbt-ethereum collects and retains...

4 Node URLs

4 Wallets, addresses, and address aliases

4 ABIs and ABI aliases

4 Default mappings of ABIs to smart contracts

4 Complete compilation info about deployed contracts

friendly (sort of)
4 Tab-completey

4 Often interactive

4 Very long but descriptive names

4 Consistent internal conventions

4 Default values and session overrides

4 Set, Drop, Print

friendly (sort of)
Get started with a few basic commands

> ethContractAbiImport <address-as-hex-alias-or-ens>
> ethTransactionView <address-as-hex-alias-or-ens> <function-args>*
> ethTransactionInvoke <address-as-hex-alias-or-ens> <function-args>*
> ethTransactionEtherSend <address-as-hex-alias-or-ens>
> ethAddressBalance [optional-address-as-hex-alias-or-ens]
> ethAddressAliasSet <alias-name> <address-as-hex-alias-or-ens>

batteries included
ENS

4 ENS can be used in place of addresses and address
aliases

4 Acts as a full ENS client, including registering
names, extending registrations, creating subnodes,
transfering ownership, etc.

batteries included
ERC-20

4 Built in support for managing ERC-20 tokens using
human-friendly values as defined in the decimals()
function

Etherscan

4 Autoimport ABIs of verified contracts if an
Etherscan API key has bee set.

powerful
4 Full smart-contract development environment

4 Supports signing for EIP-155 chain IDs and seamless
switching between chains

4 Offline transaction-signing for cold wallets

4 Sophisticated control of gas and nonces

4 Name and store reusable ABIs

4 Overlay arbitrary ABIs on top of any contract

programming (Scala-centric)
4 Automatic stub generation

4 Thread-pool managed async stubs or easy-to-
understand synchronous stubs

4 Solidity-like embedded DSL

4 Solidity events become typesafe, pattern-
matchable Scala objects

4 Standard "reactive" filter-free event subscriptions

programming (Scala-centric)
contract DocHashStore {
 event Stored(bytes32 docHash, uint timestamp, string name, string description, address filer);
 event Amended(bytes32 docHash, string name, string description, address updater, uint priorUpdateBlockNumber);
 event Opened(address admin, uint timestamp);
 event Closed(address closer, uint timestamp);
 event Authorized(address user);
 event Deauthorized(address user);

 address public admin;
 bytes32[] public docHashes;
 mapping (address => bool) public authorized;
 uint public openTime;
 uint public closeTime;
 bool public closed;

 function close() public;
 function authorize(address filer) public;
 function deauthorize(address filer) public;
 function canUpdate(address user) public view returns (bool);
 function store(bytes32 docHash, string memory name, string memory description) public;
 function amend(bytes32 docHash, string memory name, string memory description) public;
 function isStored(bytes32 docHash) public view returns (bool);
 function timestamp(bytes32 docHash) public view returns (uint);
 function name(bytes32 docHash) public view returns (string memory);
 function description(bytes32 docHash) public view returns (string memory);
 function filer(bytes32 docHash) public view returns (address);
 function size() public view returns (uint);
}

programming (Scala-centric)
// for simplicity, this example builds a synchronous DocStoreHash
// if we called AsyncDocStoreHash.build(...) instead, the same code would work
// but all stub return values would be Futures

val docstore = DocHashStore.build(jsonRpcUrl = "https://mainnet.infura.com/v3/20963efa809b0178",
 chainId = Some(EthChainId.Mainnet),
 contractAddress = EthAddress("0x1a4934109b54911a724dfa0e45d5370dbbe923b0"))

implicit val sender = stub.Sender.Basic(somePrivateKey)

val sz = docstore.view.size()

val docHash = sol.Bytes32("0x00e2b1120d2c76a3b44640c325681c892dd3a1fcb33bf412169a2c17f5e0c171".decodeHex)
val txnInfo = docstore.txn.store(docHash, "ImportantDocument.pdf", "This is a really important document")

programming (Scala-centric)
// inside a standard org.reactivestreams.Subscriber[DocHashStore.Event]

def onNext(evt : DocHashStore.Event) = {
 evt match {
 case _ : Stored | _ : Amended => markDirtyDocRecordSeq(address)
 case _ : Closed => {
 markDirtyOpenClose(address)
 subscriptionRef.get.foreach(_.cancel())
 drop(address)
 }
 case evt @ Authorized(userAddress) => markDirtyUserCanUpdate(evt.sourceAddress, userAddress)
 case evt @ Deauthorized(userAddress) => markDirtyUserCanUpdate(evt.sourceAddress, userAddress)
 case _ => DEBUG.log(s"${this} encountered and ignored event ${evt}")
 }
}

demo

support
4 Decent documentation at www.sbt-ethereum.io

4 Tag sbt-ethereum on ethereum.stackexchange.com

4 DM @interfluidity on Twitter

4 E-mail swaldman@mchange.com
4 swaldman/sbt-ethereum on GitHub

https://www.sbt-ethereum.io/
https://ethereum.stackexchange.com/questions/tagged/sbt-ethereum
https://ethereum.stackexchange.com/
https://twitter.com/interfluidity
mailto:swaldman@mchange.com
https://github.com/swaldman/sbt-ethereum

support me
4 Use the software

4 Tell me what sucks so I can fix it

4 especially if anything sucks related to security

4 If you want to offer financial support, get in touch,
or contribute to sbt-ethereum.eth

https://etherscan.io/enslookup?q=sbt-ethereum.eth

acknowledgments
Waiting for Godot image nicked from

4 https://www.onecolumbiasc.com/event/waiting-for-godot/

https://www.onecolumbiasc.com/event/waiting-for-godot/

